Mid-course feedback, Course Projects, Functions

Info 206

Niall Keleher

14 September 2017

Today's Outline

- 1. Mid-course feedback
- 2. Group Projects
 - Status and Expectations
 - $\circ~$ Team meetings today
- 3. Functions
- 4. Exercises
 - Continue with meeting 6 exercises
 - Functions

• Using git

- Using git
- Python object types

- Using git
- Python object types
- Python Statements & Syntax

- Using git
- Python object types
- Python Statements & Syntax
- Iteration

- Using git
- Python object types
- Python Statements & Syntax
- Iteration
- Functions

The road ahead

- Recursion
- Modules
- Classes & OOP
- Complexity
- Exceptions & Tests

Group Projects

Course Objectives

- work collaboratively using source control
- understand and operationalize core Python objects
- create user-written functions in Python
- work with classes in Python
- clearly explain and execute good practices in software prototyping

Project Objectives

Teams are responsible for:

- identifying the problem that they aim to address
- working collaboratively and sharing code through Github
- building and testing software
- display final project results on the last day of the course (17 October)

MVP & Design Document

Team meeetings

- Today and Tuesday
- Review the problem statement
- Discuss ways of decomposing and modularizing the proposed solution
- How is the team dividing up work?
- Achievable and stretch goals
- What is your MVP?

Functions

Functions

- Decomposition
- Modularity

Abstraction

Scope & Namespace

• What is scope?

Scope & Namespace

- What is scope?
- LEGB

Scope & Namespace

- What is scope?
- LEGB
 - Local Names assigned within a function
 - Enclosing Names in the local scope of a function
 - Global Names assigned at the top-level of a module or declared global in a function
 - Built-in Preassigned names

Newton-Raphson (Heron's Method)

- Common method for approximating a solution
- Uses successive approximation
- Used to find the root of a wide range of functions (e.g. polynomials)

Newton-Raphson

- Supply ans (some guess)
- If ans is an approximation of the root of a polynomial, p(), then

ans - p(ans)/p'(ans)

is a better solution.

• Repeat until sufficiently close to the solution.

Newton-Raphson

Exercises

Questions about Meeting 6 Exercises?

Meeting 7: Function Exercises

Exercises

- Instructions in the Github course-exercise repository
- Meeting 6 Due at the end of the day on Friday (Sept 15)
- Meeting 7 Due at the end of the day on Tuesday (Sept 19)

Exercises

- Instructions in the Github course-exercise repository
- Meeting 6 Due at the end of the day on Friday (Sept 15)
- Meeting 7 Due at the end of the day on Tuesday (Sept 19)

Get ready for more exercises between now and early October!

End of Meeting #7

For next meeting

- Videos:
 - 1. Recursions Basics (10 mins)
 - 2. Traversing Nested Dictionaries with Recursion (13 mins)
 - 3. Comprehensions (10 mins)
- Readings:
 - Lutz Chapter 20: Comprehensions and Generations